Fit a workflow with specific parameters
Examples
library(tidymodels)
#> ── Attaching packages ────────────────────────────────────── tidymodels 1.3.0 ──
#> ✔ broom 1.0.8 ✔ recipes 1.3.1
#> ✔ dials 1.4.0 ✔ rsample 1.3.0
#> ✔ dplyr 1.1.4 ✔ tibble 3.3.0
#> ✔ ggplot2 3.5.2 ✔ tidyr 1.3.1
#> ✔ infer 1.0.9 ✔ tune 1.3.0
#> ✔ modeldata 1.4.0 ✔ workflows 1.2.0
#> ✔ parsnip 1.3.2 ✔ workflowsets 1.1.1
#> ✔ purrr 1.0.4 ✔ yardstick 1.3.2
#> ── Conflicts ───────────────────────────────────────── tidymodels_conflicts() ──
#> ✖ purrr::discard() masks scales::discard()
#> ✖ dplyr::filter() masks stats::filter()
#> ✖ dplyr::lag() masks stats::lag()
#> ✖ recipes::step() masks stats::step()
library(xgboost)
#>
#> Attaching package: ‘xgboost’
#> The following object is masked from ‘package:dplyr’:
#>
#> slice
library(modeldata)
data(cells)
split <- cells |>
mutate(across(where(is.character), as.factor)) |>
sample_n(500) |>
initial_split(strata = case)
train <- training(split)
resamples <- vfold_cv(train, v = 2, strata = case)
wf_spec <- train |>
recipe(case ~ .) |>
step_integer(all_nominal_predictors()) |>
workflow(boost_tree(mode = "classification"))
res_spec <- wf_spec |> fit_results(resamples)
res_spec |> collect_metrics()
#> # A tibble: 3 × 6
#> .metric .estimator mean n std_err .config
#> <chr> <chr> <dbl> <int> <dbl> <chr>
#> 1 accuracy binary 0.489 2 0.00802 Preprocessor1_Model1
#> 2 brier_class binary 0.317 2 0.00615 Preprocessor1_Model1
#> 3 roc_auc binary 0.481 2 0.00338 Preprocessor1_Model1