Skip to contents

It's useful for reading the most common types of flat file data, comma separated values and tab separated values.

Usage

read_chr(
  file,
  delim = ",",
  locale = NULL,
  ...,
  date_names = "en",
  date_format = "%AD",
  time_format = "%AT",
  decimal_mark = ".",
  grouping_mark = "",
  tz = "CET",
  encoding = "UTF-8",
  asciify = FALSE
)

Arguments

file

Either a path to a file, a connection, or literal data (either a single string or a raw vector).

delim

Single character used to separate fields within a record.

locale

The locale controls defaults that vary from place to place. The default locale is US-centric (like R), but you can use locale() to create your own locale that controls things like the default time zone, encoding, decimal mark, big mark, and day/month names.

...

Other parameters to readr::read_delim.

date_names

"en" from readr::locale

date_format

"%AD" from readr::locale

time_format

"%AT" from readr::locale

decimal_mark

"." from readr::locale

grouping_mark

"" from readr::locale

tz

"CET"

encoding

"UTF-8"

asciify

FALSE

Details

The read_chr function works like readr::read_delim, except that column sreturned would be characters and with clean names. It requires readr and janitor packages installed.

Examples

read_chr(readr::readr_example("mtcars.csv"), delim = ",")
#> # A tibble: 32 × 11
#>    mpg   cyl   disp  hp    drat  wt    qsec  vs    am    gear  carb 
#>    <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr>
#>  1 21    6     160   110   3.9   2.62  16.46 0     1     4     4    
#>  2 21    6     160   110   3.9   2.875 17.02 0     1     4     4    
#>  3 22.8  4     108   93    3.85  2.32  18.61 1     1     4     1    
#>  4 21.4  6     258   110   3.08  3.215 19.44 1     0     3     1    
#>  5 18.7  8     360   175   3.15  3.44  17.02 0     0     3     2    
#>  6 18.1  6     225   105   2.76  3.46  20.22 1     0     3     1    
#>  7 14.3  8     360   245   3.21  3.57  15.84 0     0     3     4    
#>  8 24.4  4     146.7 62    3.69  3.19  20    1     0     4     2    
#>  9 22.8  4     140.8 95    3.92  3.15  22.9  1     0     4     2    
#> 10 19.2  6     167.6 123   3.92  3.44  18.3  1     0     4     4    
#> # ℹ 22 more rows