download_cities_with_population_5000.RdDownload cities with population 5000 information from geonames.
download_cities_with_population_5000()It returns a tibble with all the data
<https://github.com/jrosell/rreversegeocoder/blob/main/R/cities.R>
download_cities_with_population_5000()
#> # A tibble: 53,234 × 19
#> geonameid name ascii…¹ alter…² geona…³ geona…⁴ featu…⁵ feature country cc2
#> <chr> <chr> <chr> <chr> <dbl> <dbl> <chr> <chr> <chr> <chr>
#> 1 3039163 Sant… Sant J… San Ju… 42.5 1.49 P PPLA AD NA
#> 2 3039678 Ordi… Ordino Ordino… 42.6 1.53 P PPLA AD NA
#> 3 3040051 les … les Es… Ehskal… 42.5 1.53 P PPLA AD NA
#> 4 3040132 la M… la Mas… La Mac… 42.5 1.51 P PPLA AD NA
#> 5 3040686 Enca… Encamp Ehnkam… 42.5 1.58 P PPLA AD NA
#> 6 3041204 Cani… Canillo Canill… 42.6 1.60 P PPLA AD NA
#> 7 3041563 Ando… Andorr… ALV,An… 42.5 1.52 P PPLC AD NA
#> 8 290594 Umm … Umm Al… Oumm a… 25.6 55.6 P PPLA AE NA
#> 9 291074 Ras … Ras Al… Julfa,… 25.8 55.9 P PPLA AE NA
#> 10 291279 Muza… Muzayr… Mezair… 23.1 53.8 P PPL AE NA
#> # … with 53,224 more rows, 9 more variables: admin1 <chr>, admin2 <chr>,
#> # admin3 <chr>, admin4 <chr>, population <dbl>, elevation <dbl>, dem <dbl>,
#> # timezone <chr>, mdate <date>, and abbreviated variable names ¹asciiname,
#> # ²alternatenames, ³geoname_latitude, ⁴geoname_longitude, ⁵feature_class